

Big Data for Operator Support in Chemical Plants

Introduction

Deutsches Zentrum für Luft- und Raumfahrt e.V. Projektträger im DLR GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

■ BASF

- Challenging problems für data analytics more machine learning then simple statistics
- Data collection processes not optimized for Big
- High efforts for data exploration due to data silos with unstructured and inconsistent references
- High efforts for data-preparation and cleansing due to interrelations unknown to the data analyst

■ BASF

Objective: Operator Support functions

- Early Warnings
- Ad-hoc Analysis
- Decision Support

Approach: Integrated Analysis of all plant data

 Measurements, engineering data, electronic shift books,...

Research Topics

- Algorithm development
- Indexing of and search in process data
- Integration into real-time plant operation
- Big data technologies and architecture
- User Centered interaction concepts

FEE – Data and System Landscape

FEE – Development Appraoch

Big Data for Operator Support in Chemical Plants

Szenario – From Big Data to Smart Data

Deutsches Zentrum für Luft- und Raumfahrt e.V. Projektträger im DLR GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

iapidminer

Current State:

Who:

Operators in control room and in the field

What:

 Foaming in a process column results in increase pressure and risk of spillover. Anti-foaming agent needs to be added manually.

How:

Monitoring relevant signals in the control room

Problems:

- (1) Risk of not recognizing foaming early enough
- (2) Foaming is a fast process actions are always taken under time pressure
- (3) Unexperienced operators might not recognize the situation or do not know how to react

Desired State:

FEE Support:

BASE

Early information about certain or probably foaming in the new future.

Desire:

- (1) Timely information latest 30 minutes before the foaming
- (2) Clear and specific instructions, no need for diagnostics activities
- (3) High prediction rate, few false alarms

Hybrid Data Exploration

BASF

Full Text Search across all Data Sources

Q schaum Suchen	⊙ - 01.04.	2014 - 30.04.2014
Anlagenkontext Textsuche		
Alle Alarme Betriebsvorschriften S	Schichtberichte	Messstellenliste
Ereignis K433 Überriss ,Antischaum dosiert,A433 a.B. Produktionsaufgabe SC4 - Scotanlage CA4 NÜ X Zeitpunkt 2014-04-22T13:05:00 M X EreignisKlasse INFORMATION A X Bereich AV-2 Ereignisbeginn		t-5: NaOH zur K431 dosiert, Eingangsarmatur NaOH B.L. wieder geschlossen t t-4: A431 a.B., gespült und entleert, spült mit N2,SC4 - Scotanlage CA4,X t-3: A431 Filterkerzen wechseln,SC4 - Scotanlage CA4,X,2014-04-21T20:19:04 t-2: A431 Filterkerzen gewechselt und i.B.,SC4 - Scotanlage CA4,X,2014-04 t-1: LZ6309/A überprüft i.O.,SC4 - Scotanlage CA4,X,2014-04-22T12:55:00,X t: K433 Überriss ,Antischaum dosiert,A433 a.B.,SC4 - Scotanlage CA4,X,2014- t+1: P433A Saugsiebkontrolle,SC4 - Scotanlage CA4,X,2014-04-22T15:56:00,10 t+2: P433B Saugsiebkontrolle,SC4 - Scotanlage CA4,X,2014-04-22T16:01:00,10 t+3: P433B Scheibe in Entleerung Saugseite stecken,SC4 - Scotanlage CA4,X t+4: A433 wieder i.B.,SC4 - Scotanlage CA4,X,2014-04-22T16:23:00,X,INFORM.

Simple access to data by full text search

Topology Browsing

Graphical Exploration of data based on derived plant topologies

TECHNISCHE UNIVERSITÄT

DRESDEN

Tool supported Data Exploration

Speed-up typical data cleansing & selection tasks

iapidminer

Modelling, -validation and application

THE WORD FOR CHEMICALS

Case study: foaming detection in SCOT plant

- Automated selection of significant input signals and model terms for ARX process model
- Automated selection of significant model terms for AR time-series models
- Overall validation by iterative multi-step prediction
- Simple alarm logic on predicted signals (threshold for signal amplitude and signal gradient)

Predictive Alarming from Engineering Perspective

Critical signal:

- Sampling: 1 Min
- Measurements per signals: 44641
- Potential Input Signals: 29
- Significant Input signals : 7
 - Timeliness of predictive alarm: 35 minutes

Big Data for Operator Support in Chemical Plants

Scenario – Anomaly Detection: Big Data for rare events

Deutsches Zentrum für Luft- und Raumfahrt e.V. Projektträger im DLR GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Current State:

Who:

Operator in the control room (and process engineers)

What:

Monitoring of the plant in ,calm' situations

How:

- Browsing operator screens and trend display for suspicious signals
- Is only done in ,calm' situation without stress

Problems:

- (1) Risk to simply overlook a suspicious signal
- (2) Monitoring without broad coverage in stressful situations
- (3) Difficult for unexperienced operators to judge the , suspiciousness' of signals

Desired State:

FEE Support:

BASE

Identify suspicious signals and providing relevant data for diagnosis

Desire:

- (1) Fast visual impression on abnormalities in the process
- (2) Put into context to historical ,normal' and ,abnormal' signal paths
- (3) Providing extended context (relevant alarms, operator notes, documents)

📖 rapidminer

Subsequence Matching basierte Anomaliedetektion

The distance between a live data time-series and the most similar subsequence from historical database is used to calculate the anomaly score.

Case Study – Oscillation Detection

- Continuously operated butadiene plant
- One (known) singular anomaly
- High Data Volume: ~1000 measuring points with sampling rate of 1 minutes over two years
- Heterogeneous: Pressure, flows, levels, analyzer, temperatures, varying compression over time and different from time-series to time-series
- Nonstationary: Frequent load changes
- Data Selection:
 - Data selection without expert knowledge: Elimination of redundant and constant time-series to 104 measuring points
 - Data selection by expert knowledge: 13 measuring points (shown)

 Visualization of calculated anomaly scores in a heat map

BASE

rapidminer

Operator support by Search Term Suggestion

 Information available in unstructured formats

 Objective: Support operator in finding information by suggestion of context-sensitive search terms

Antischaum Desorber Pumpe 324 Kopfdruck

21

Operator Interface – Suspicous Signals (1)

rapidminer

Operator Interface – Suspicous Signals (2)

i rapidminer

Operator Interface – Suspicous Signals (3)

impidminer (

Operator Interface – Suspicous Signals (4)

iapidminer

Operator Interface – Suspicous Signals (5)

iapidminer

Operator Schnittstelle zur Anomalie-Erkennung (2)

Big Data for Operator Support in Chemical Plants

Summary

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. Projektträger im DLR GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

What has been shown

- Transfer of (big) data analytics into the context of chemical industry
- Challenges of a big data architecture for chemical plants
- Solution approach with two typical scenarios (Event prediction and anomaly detection)
- Next steps
 - Work on additional application scenarios
 - Further refinement of methods and demonstrating transfer to other plants
 - Demonstration of functionality in the plant context

